Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes†
Abstract
We report a facile method to topotactically synthesize Na1.25V3O8 nanowires with a novel hierarchical zigzag structure. The unique morphology can provide an increased electrode–electrolyte contact area and better strain accommodation; also the topotactic intercalation method can improve structure integrity and robustness. The as-synthesized material delivers a capacity of 172.5 mA h g−1 at 100 mA g−1, shows excellent cyclability with a capacity fading of only 0.0138% per cycle at 1 A g−1 for 1000 cycles, and high rate capability as a sodium-ion battery cathode. We propose that the novel morphology as well as intrinsically advantageous structural features can synergistically facilitate the kinetics and stability, resulting in superior electrochemical performance.