Issue 10, 2015

Sodium intercalation chemistry in graphite

Abstract

The insertion of guest species in graphite is the key feature utilized in applications ranging from energy storage and liquid purification to the synthesis of graphene. Recently, it was discovered that solvated-Na-ion intercalation can occur in graphite even though the insertion of Na ions alone is thermodynamically impossible; this phenomenon enables graphite to function as a promising anode for Na-ion batteries. In an effort to understand this unusual behavior, we investigate the solvated-Na-ion intercalation mechanism using in operando X-ray diffraction analysis, electrochemical titration, real-time optical observation, and density functional theory (DFT) calculations. The ultrafast intercalation is demonstrated in real time using millimeter-sized highly ordered pyrolytic graphite, in which instantaneous insertion of solvated-Na-ions occurs (in less than 2 s). The formation of various stagings with solvated-Na-ions in graphite is observed and precisely quantified for the first time. The atomistic configuration of the solvated-Na-ions in graphite is proposed based on the experimental results and DFT calculations. The correlation between the properties of various solvents and the Na ion co-intercalation further suggests a strategy to tune the electrochemical performance of graphite electrodes in Na rechargeable batteries.

Graphical abstract: Sodium intercalation chemistry in graphite

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2015
Accepted
27 Jul 2015
First published
04 Aug 2015

Energy Environ. Sci., 2015,8, 2963-2969

Author version available

Sodium intercalation chemistry in graphite

H. Kim, J. Hong, G. Yoon, H. Kim, K. Park, M. Park, W. Yoon and K. Kang, Energy Environ. Sci., 2015, 8, 2963 DOI: 10.1039/C5EE02051D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements