Issue 12, 2015

Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3

Abstract

Hybrid metal–organic perovskite solar cells have astounded the solar cell community with their rapid rise in efficiency while maintaining low-cost fabrication. The intrinsic material photophysics related to the generation of free charges, their dynamics and efficiency, however, remains to be understood. As fabrication techniques improve, larger crystal grain sizes have been shown to be a critical factor for improving both the optical and transport properties of the hybrid metal halide perovskites. In this work, we use pulses of multi-THz frequency light in the ultra-broadband 1–30 THz (4–125 meV) range to observe the ac conductivity in large single crystal CH3NH3PbI3. Our spectra reveal the ultrafast dynamics and efficiencies of free charge creation and extremely high charge carrier mobility as high as 500–800 cm2 V−1 s−1. While quasi-equilibrium analysis of efficiencies through the Saha equation suggests a binding energy on the order of 49 meV, an observed reflectance feature appearing at high pump fluence occurs at 12 meV and is consistent with an orbital transition of the exciton, indicating a much lower Rydberg energy of 17 meV at room temperature. The signature of the exciton is found to vanish on a 1 ps time scale commensurate with the appearance of mobile carriers, consistent with thermal dissociation of the exciton to the continuum in the room temperature tetragonal phase.

Graphical abstract: Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2015
Accepted
14 Oct 2015
First published
26 Oct 2015

Energy Environ. Sci., 2015,8, 3700-3707

Author version available

Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström and D. G. Cooke, Energy Environ. Sci., 2015, 8, 3700 DOI: 10.1039/C5EE02503F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements