Issue 8, 2015

Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function

Abstract

Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.

Graphical abstract: Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function

Article information

Article type
Paper
Submitted
10 Apr 2015
Accepted
08 Jun 2015
First published
10 Jun 2015

Food Funct., 2015,6, 2568-2577

Author version available

Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function

Y. Yue, S. Wu, Z. Li, J. Li, X. Li, J. Xiang and H. Ding, Food Funct., 2015, 6, 2568 DOI: 10.1039/C5FO00378D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements