Issue 12, 2015

Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones

Abstract

In this study, the effects of agavins (branched fructans) along with a diet shift on metabolic parameters, short chain fatty acid (SCFA) production and gastrointestinal hormones in overweight mice were established. Male C57BL/6 mice were fed with a standard (ST) or high fat (HF) diet over the course of 5 weeks, with the objective to induce overweightness in the animals, followed by a diet shift (HF_ST) and a diet shift with agavins (HF_ST + A) or inulin (HF_ST + O) for 5 additional weeks. After the first 5 weeks, the HF group showed a 30% body weight gain and an increase in glucose, triglyceride and cholesterol concentrations of 9%, 79% and 38% respectively when compared to the ST group (P < 0.05). Only the overweight mice that received agavins or inulin in their diets reversed the metabolic disorders induced by consumption of the HF diet, reaching the values very close to those of the ST group (P < 0.05). Furthermore, the consumption of agavins or inulin led to higher SCFA concentrations in the gut and modulated hormones such as GLP-1 and leptin involved in food intake regulation (P < 0.05). These findings demonstrate that a change of diet and fructan consumption such as agavins is a good alternative to increase weight loss and to improve the metabolic disorders associated with being overweight.

Graphical abstract: Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2015
Accepted
16 Aug 2015
First published
20 Aug 2015

Food Funct., 2015,6, 3720-3727

Author version available

Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones

A. Huazano-García and M. G. López, Food Funct., 2015, 6, 3720 DOI: 10.1039/C5FO00830A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements