Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation†
Abstract
Proof-of-concept of a novel consecutive two-step biofuel process (H2Bioil), based on fast-hydropyrolysis and downstream vapor-phase catalytic hydrodeoxygenation (HDO), to produce liquid fuel range (C4+) hydrocarbons with undetectable oxygen content, from cellulose and an intact biomass (poplar) is presented. The carbon recovery as C1–C8+ hydrocarbons is ∼73% (C4+ ∼55%) from cellulose and ∼54% (C4+ ∼32%) from poplar. Advantages of independent control of fast-hydropyrolysis and HDO temperatures, along with synergistic process integration aspects are discussed.