Issue 17, 2015

Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis

Abstract

Over the past decade, many microfluidic platforms for fluid processing have been developed in order to perform on-chip fluidic manipulations. Many of these methods, however, require expensive and bulky external supporting equipment, which are not typically applicable for microsystems requiring portability. We have developed a new type of portable contactless metal electro-osmotic micropump capable of on-chip fluid pumping, routing and metering. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source, and separated from a main flow channel by a thin micron-scale PDMS membrane. The thin contactless membrane allows for field penetration and electro-osmotic (EO) flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. The maximum flow rates and pressures generated by the pump using DI water as a working buffer are 10 nL min−1 and 30 Pa, respectively. With our current design, the maximum operational conductivity where fluid flow is observed is 0.1 mS cm−1. Due to the small size and simple fabrication procedure, multiple micropump units can be integrated into a single microfluidic device for automated on-chip routing and sample metering applications. We experimentally demonstrated the ability to quantify micropump electro-osmotic flowrate and pressure as a function of applied voltage, and developed a mathematical model capable of predicting the performance of a contactless micropump for a given external load and internal hydrodynamic microchannel resistance. Finally, we showed that by activating specific pumps within a microchannel network, our micropumps are capable of routing microchannel fluid flow and generating plugs of solute.

Graphical abstract: Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis

Associated articles

Article information

Article type
Paper
Submitted
01 May 2015
Accepted
29 May 2015
First published
01 Jun 2015

Lab Chip, 2015,15, 3600-3608

Author version available

Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis

X. Fu, N. Mavrogiannis, S. Doria and Z. Gagnon, Lab Chip, 2015, 15, 3600 DOI: 10.1039/C5LC00504C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements