Issue 23, 2015

Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)

Abstract

Droplet-based microfluidics has led to transformational new approaches in diverse areas including materials synthesis and high-throughput biological assays. However, the translation of droplet microfluidics technology into commercial applications requires scale-up of droplet generation from the laboratory (<10 mL h−1) to the industrial (>1 L h−1) scale. To address this challenge, we develop a three-dimensional monolithic elastomer device (3D MED) for mass production of monodisperse emulsion droplets. Using double-sided imprinting, 3D microchannels are formed in a single elastomer piece that has 1000 parallel flow focusing generators (k-FFGs). Compared to previous work that parallelizes droplet generation, the 3D MED eliminates the needs for alignment and bonding of multiple pieces and thus makes it possible to achieve the high flow rates and pressure necessary for the kilo-scale generation of droplets. Using this approach, we demonstrate mass production of water-in-oil (W/O) emulsion droplets at production rates as high as 1.5 L h−1 (>30 billion 45 μm diameter droplets per hour), with a coefficient of variation of droplet diameter of only 6.6%. Because of the simplicity, robustness, and manufacturability of our 3D MED architecture, it is well suited to bridge the gap between the continuously growing library of promising microfluidic technologies to generate microparticles that have been demonstrated in laboratory settings and their successful application in industry.

Graphical abstract: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)

Supplementary files

Article information

Article type
Technical Innovation
Submitted
27 Aug 2015
Accepted
25 Sep 2015
First published
25 Sep 2015

Lab Chip, 2015,15, 4387-4392

Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)

H. Jeong, V. R. Yelleswarapu, S. Yadavali, D. Issadore and D. Lee, Lab Chip, 2015, 15, 4387 DOI: 10.1039/C5LC01025J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements