Issue 6, 2015

Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons

Abstract

One of the main barriers blocking sustainable hydrogen production is the use of expensive platinum-based catalysts to produce hydrogen from water. Herein we report the cost-effective synthesis of catalytically active, nitrogen-doped, cobalt-encased carbon nanotubes using inexpensive starting materials—urea and cobalt chloride hexahydrate (CoCl2·6H2O). Moreover, we show that the as-obtained nanocarbon material exhibits a remarkable electrocatalytic activity toward the hydrogen evolution reaction (HER); and thus it can be deemed as a potential alternative to noble metal HER catalysts. In particular, the urea-derived carbon nanotubes synthesized at 900 °C (denoted as U-CNT-900) show a superior catalytic activity for HER with low overpotential and high current density in our study. Notably also, U-CNT-900 has the ability to operate stably at all pH values (pH 0–14), and even in buffered seawater (pH 7). The possible synergistic effects between carbon-coated cobalt nanoparticles and the nitrogen dopants can be proposed to account for the HER catalytic activity of U-CNT-900. Given the high natural abundance, ease of synthesis, and high catalytic activity and durability in seawater, this U-CNT-900 material is promising for hydrogen production from water in industrial applications.

Graphical abstract: Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2014
Accepted
14 Oct 2014
First published
15 Oct 2014

Nanoscale, 2015,7, 2306-2316

Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons

S. Gao, G. Li, Y. Liu, H. Chen, L. Feng, Y. Wang, M. Yang, D. Wang, S. Wang and X. Zou, Nanoscale, 2015, 7, 2306 DOI: 10.1039/C4NR04924A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements