Issue 29, 2015

Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

Abstract

The nonlinear absorption properties of bidimensional arrays of Au–Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid-state nanophotonic devices with enhanced ultrafast nonlinear optical properties.

Graphical abstract: Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2015
Accepted
08 Jun 2015
First published
12 Jun 2015

Nanoscale, 2015,7, 12411-12418

Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

T. Cesca, N. Michieli, B. Kalinic, A. Sánchez-Espinoza, M. Rattin, V. Russo, V. Mattarello, C. Scian, P. Mazzoldi and G. Mattei, Nanoscale, 2015, 7, 12411 DOI: 10.1039/C5NR01715G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements