Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers†
Abstract
Cyclodextrin (CD) capped CdTe quantum dots (QDs) were prepared with uniform dimension (average diameter ∼5 nm) and high quantum yield (ca. 65%). By taking advantage of the inclusion complexation of CD, β-CD-CdTe QDs exhibited strong fluorescence quenching in a linear relationship with the concentration of o-, m- and p-nitrophenol in the range of 20–100 μM. The detection limit reached 0.05 μM for o-/p-nitrophenol and 0.3 μM for m-nitrophenol. The fluorescence decay study revealed the stabilization effect of CD covering on CdTe QDs and fine-tuning of the fluorescence for selective ultrasensitive detection of nitrophenol isomers.