A three-dimensional interconnected hierarchical FeOOH/TiO2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation†
Abstract
A novel ZnO/TiO2/FeOOH hierarchical nanostructure has been synthesized by a low temperature chemical bath deposition method. The integrated three-dimensional (3D) nanostructure consists of one-dimensional (1D) ZnO/TiO2 core–shell nanowire arrays and two-dimensional (2D) interconnected FeOOH nanosheets. By applying such a hierarchical nanostructure as a photoanode for photoelectrochemical water reaction, higher photostability and photocurrent density are gained compared with the reported ZnO based nanostructures. It is concluded that the giant enhancement of the properties is because, in the process of photoelectrochemical reaction, electron–hole separation and transfer are enhanced efficiently through the ZnO/TiO2 heterojunction, and in the meanwhile, terminal interconnected FeOOH nanosheets play both the roles of a surface catalyst and a protective layer effectively to accelerate water splitting reaction and enhance photostability. Based on such an environmentally friendly hierarchical nanostructure, photoelectrochemical water splitting and other similar reactions could be performed effectively and economically.