Issue 9, 2015

Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement

Abstract

NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn2+ with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with 13C labelled acetonide groups in the rhamnose sugar and steroid moieties ([13C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the 13C CP-MAS solid-state NMR spectra of the NKA-[13C2]ODA complex exhibit distinct signals for the two 13C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic α-subunit binds a single Mn2+ in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn2+ broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn2+ site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins.

Graphical abstract: Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2014
Accepted
23 Dec 2014
First published
23 Dec 2014

Org. Biomol. Chem., 2015,13, 2664-2668

Author version available

Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement

C. A. P. Whittaker, S. G. Patching, M. Esmann and D. A. Middleton, Org. Biomol. Chem., 2015, 13, 2664 DOI: 10.1039/C4OB02427C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements