Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes†
Abstract
A series of oxometallic species and metal acetylacetonates (acac) was examined as catalysts for oxidative carbonylation of styrene with benzaldehyde using t-butylhydroperoxide as the co-oxidant in warm acetonitrile. Among them, VO((acac)2 and vanadyl(IV) chloride were found to be the only catalyst class to achieve cross-coupling processes by judiciously tuning the ligand electronic attributes, leading to β-hydroxylation– and β-peroxidation–carbonylation of styrene, respectively, in a complementary manner. Mechanistic studies indicated that vanadyl-associated acyl radicals generated by t-butoxy radical-assisted, homolytic cleavage of the aldehyde C–H bond were involved in tandem processes with an exclusive syn diastereoselectivity in the case of β-methylstyrene.