Issue 40, 2015

Bioorthogonal phase-directed copper-catalyzed azide–alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer

Abstract

Superoxide dismutase (SOD) is a 32 kDa dimeric enzyme that actively removes a toxic oxygen species within red cells. The acellular protein itself does not survive circulation as it is filtered through the kidney. Conjugating the protein to another SOD should increase the size of the dual protein above the threshold for filtration by the kidney, making the material a potential therapeutic in circulation. Site-selective chemical cross-linking of SOD introduces a bioorthogonal azide group on the cross-link so that two SODs react efficiently with a bis-alkyne through phase-directed copper-catalyzed azide–alkyne cycloaddition (PDCuAAC). The modification has a negligible effect on the catalytic activity of the constituent proteins. Consistent with the retained activity, circular dichroism (CD) spectroscopy indicates that the secondary structures of the proteins are similar to that of the native protein.

Graphical abstract: Bioorthogonal phase-directed copper-catalyzed azide–alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2015
Accepted
18 Aug 2015
First published
18 Aug 2015
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2015,13, 10244-10249

Author version available

Bioorthogonal phase-directed copper-catalyzed azide–alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer

E. M. J. Siren, S. Singh and R. Kluger, Org. Biomol. Chem., 2015, 13, 10244 DOI: 10.1039/C5OB01702E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements