Synthesis, characterization and photocatalytic activity of Ag–TiO2 nanoparticulate film
Abstract
Ag–TiO2 nanoparticulate film was synthesized by dip coating followed by adsorption and photoreduction in UVA light, characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive analysis of X-rays, glancing angle X-ray diffractometry and UV-Vis absorption spectrophotometry techniques. The data indicated the presence of TiO2 particles of anatase phase of size varying from 5–15 nm, Ag nanoparticles of size varying from 10–20 nm, and also indicated the added visible light activity in Ag–TiO2 nanoparticle films. Photocatalytic degradation of methyl parathion (O,O-dimethyl O-(4-nitrophenyl) phosphorothioate), a well known pesticide in aqueous solution was studied using Ag–TiO2 nanoparticulate film and the data was compared with TiO2 nanoparticulate film. Photocatalytic degradation reactions demonstrated pseudo first order behaviour. Methyl parathion was found to be degraded initially to paraoxon which further was degraded to p-nitrophenol, trimethyl ester of phosphoric acid, trimethyl ester of phosphothioic acid, and finally to phosphate ion. Minute amounts of carbon dioxide and acetaldehyde were also detected.