The fabrication and the characterization of a TiO2/titanate nanohybrid for efficient hydrogen evolution†
Abstract
A TiO2/titanate nanojunction photocatalyst was synthesized by a one-step hydrothermal process. Scanning electron microscopy and transmission electron microscopy were employed to characterize the morphology and structure, and to further elucidate the morphological evolution of the resulting products. X-ray diffraction and X-ray photoelectron spectroscopy were used to generally assess the crystallite phase composition of the samples and the phase transition behaviour. The TiO2/titanate nanojunction with excellent structure is of benefit for mass transfer and especially for photon-generated electron–hole separation. As a result, the nanojunction is anticipated to exhibit good photocatalytic activities for hydrogen evolution. The H2 evolution of TiO2/titanate achieves a production rate of 230.1 μmol h−1. Moreover, this report will offer a new promising strategy to improve photocatalytic hydrogen evolution efficiency with low-cost.