Issue 27, 2015

Aqueous-phase hydrodechlorination and further hydrogenation of chlorophenols to cyclohexanone in water over palladium nanoparticles modified dendritic mesoporous silica nanospheres catalyst

Abstract

Dendritic mesoporous silica nanospheres (DMSNs) have been synthesised in this work. The distance of each “arborization” is 7 nm, which plays the role of “pore”. Hydrodechlorination (HDC) of 4-chlorophenol (4-CP) as the target compound using Pd modified DMSNs as the catalyst (Pd/DMSNs) is carried out in aqueous sodium hydroxide solution under atmospheric H2 pressure, fairly mild conditions for a potential application to treat industrial wastewater. Compared with some supported Pd catalysts, Pd/DMSNs exhibit an improved catalytic performance, owing to the specific dendritic structure, which can improve mass transfer, and increase the adsorption–desorption rate of compounds. In this work, both the dechlorination process and further hydrogenation process of 4-CP are studied under various conditions including different catalyst dosages and different temperatures. By analyzing the experimental results, it is clear that the influential factors mentioned above have a strong impact on the selectivity of the HDC experiment. In addition, 2-CP, 3-CP, and 2,4-DCP are also tested as target pollutants.

Graphical abstract: Aqueous-phase hydrodechlorination and further hydrogenation of chlorophenols to cyclohexanone in water over palladium nanoparticles modified dendritic mesoporous silica nanospheres catalyst

Article information

Article type
Paper
Submitted
16 Dec 2014
Accepted
05 Feb 2015
First published
05 Feb 2015

RSC Adv., 2015,5, 20716-20723

Author version available

Aqueous-phase hydrodechlorination and further hydrogenation of chlorophenols to cyclohexanone in water over palladium nanoparticles modified dendritic mesoporous silica nanospheres catalyst

Y. Liu, Z. Dong, X. Li, X. Le, W. Zhang and J. Ma, RSC Adv., 2015, 5, 20716 DOI: 10.1039/C4RA16471G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements