Issue 23, 2015

TBHP mediated oxidation of N-2-alkynylphenyl α-amino carbonyl compounds to oxalic amides using visible light photoredox catalysis and their application in the synthesis of 2-aryl indoles

Abstract

A visible light promoted and TBHP mediated oxidative reaction of N-2-alkynylphenyl α-amino carbonyl compounds to N-2-alkynylphenyl oxalic amides was developed. In the presence of CuBr and photocatalyst Ru(bpy)3Cl2·6H2O, the reaction proceeded smoothly to afford the corresponding oxalic amides under the irradiation of a 26 W compact fluorescence bulb at room temperature. Furthermore, N-2-alkynylphenyl oxalic amides could be subsequently transferred to 2-aryl indoles without an additional deacylation step through a favored 5-endo-dig N-cyclization process using AgNO3 as catalyst.

Graphical abstract: TBHP mediated oxidation of N-2-alkynylphenyl α-amino carbonyl compounds to oxalic amides using visible light photoredox catalysis and their application in the synthesis of 2-aryl indoles

Supplementary files

Article information

Article type
Communication
Submitted
29 Dec 2014
Accepted
03 Feb 2015
First published
03 Feb 2015

RSC Adv., 2015,5, 17383-17388

TBHP mediated oxidation of N-2-alkynylphenyl α-amino carbonyl compounds to oxalic amides using visible light photoredox catalysis and their application in the synthesis of 2-aryl indoles

W. Liu, S. Liu, H. Xie, Z. Qing, J. Zeng and P. Cheng, RSC Adv., 2015, 5, 17383 DOI: 10.1039/C4RA17232A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements