Issue 40, 2015

Fabrication of nanoprotrusion surface structured silica nanofibers for the improvement of the toughening of polypropylene

Abstract

The toughening of semi-crystalline polymers with inorganic nanofiller is very important in the practical applications of such polymers. In this study, we successfully fabricated the surface attaching silica nanoparticles of silica nanofibers (SiO2@SNFs) from the calcination of electrospun poly(vinyl pyrrolidone)/tetraethyl orthosilicate/silica nanoparticle (PVP/TEOS/SiO2) nanofibers for the toughening of polypropylene (PP). The SiO2@SNFs had a nanoprotrusion structured surface, and the degree of surface nanoprotrusion of the silica nanofibers (SNF) can be adjusted via the incorporated SiO2 nanoparticle content of the SiO2@SNFs. The effects of the SiO2 content of the SiO2@SNFs on the crystallization behavior, relative β-form crystal content, and mechanical properties of PP were investigated with polarized optical microscopy, X-ray diffraction and notched Izod impact test methods. By comparison with SNF, the SiO2@SNFs showed greater improvements in the impact strength and heterogeneous crystal nucleation of PP at the same loading content of filler. The impact strength of PP/SiO2@SNFs at a loading of 2 wt% of SiO2@SNFs with 9 phr (SiO2/TEOS = 9/100) of SiO2 nanoparticles was improved by about 1.9 and 1.4 times that of neat PP and PP/SNFs composite (2 wt% of SNFs), respectively. However, the crystallinity, relative β-form crystal content, and tensile strength of PP/SiO2@SNFs were almost independent of the SiO2 nanoparticle content of the SiO2@SNFs. Our results demonstrated that these nanoprotrusion surface structured silica nanofibers can be used as a novel nanofiller for improving the toughening of PP.

Graphical abstract: Fabrication of nanoprotrusion surface structured silica nanofibers for the improvement of the toughening of polypropylene

Article information

Article type
Paper
Submitted
26 Jan 2015
Accepted
18 Mar 2015
First published
18 Mar 2015

RSC Adv., 2015,5, 31547-31553

Author version available

Fabrication of nanoprotrusion surface structured silica nanofibers for the improvement of the toughening of polypropylene

Y. Liang, S. Wen, Y. Ren and L. Liu, RSC Adv., 2015, 5, 31547 DOI: 10.1039/C5RA01510C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements