Issue 35, 2015

Electronic pH switching of DNA triplex reactions

Abstract

Electronic reversible switching of sequence-specific DNA interactions and reactions is an important operation for programming complex molecular and microscopic processes. While both quadruplex and triplex structures are suitable for moderate pH control (pH 5–7), we focus here on the large family of DNA sequences forming pH-sensitive triplex structures. These involve Hoogsteen and Watson–Crick base pairs in pyrimidine–purine–pyrimidine (Y:R:Y) motifs. We demonstrate electronically controlled local pH cycling, integrated into a microfluidic chip, which induces DNA hybridization switching in these triplex complexes. We also show that pH switching can be used to control rapid DNA ligation in double strand templated triplex structures using disulphide linkages. Switching between DNA complexes induced by pH is first characterized using capillary gel electrophoresis before employing local microelectrodes. Robust pH cycling is achieved over a moderate pH range (4–8), by voltage-biased gold microelectrodes immersed in quinhydrone redox systems, both in solution and immobilized on the surface, and is monitored via fluorescence ratio imaging with SNARF-4F. The resulting switching of DNA structures (reversible triplex to duplex, triplex-based DNA ligation) based on a hairpin template is spatially monitored by dye–quencher fluorescence. The integration of electronically controlled pH cycling into a microfluidic reactor allows both local patterning of pH and the maintenance of constant ionic strength over many cycles.

Graphical abstract: Electronic pH switching of DNA triplex reactions

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2015
Accepted
09 Mar 2015
First published
10 Mar 2015

RSC Adv., 2015,5, 27313-27325

Author version available

Electronic pH switching of DNA triplex reactions

G. A. S. Minero, P. F. Wagler, A. A. Oughli and J. S. McCaskill, RSC Adv., 2015, 5, 27313 DOI: 10.1039/C5RA02628H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements