Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting†
Abstract
Highly ordered γ-Fe2O3/reduced graphene oxide (RGO) was synthesized via a facile solution technique combined with calcination at various temperatures. The maghemite iron oxide structure was obtained on the GO surface and improved crystallinity of γ-Fe2O3 was observed as the calcination temperature increased. The prepared highly ordered maghemite structure on RGO exhibited an excellent water splitting performance under UV light (∼360 nm) illumination. The photocurrent density of RGO/γ-Fe2O3 calcined at 500 °C was 6.74 mA cm−2 vs. RHE and a high incident photon to current conversion efficiency (IPCE) of 4.7%, was achieved. This photocurrent density and the IPCE values are 3.7 times and 4 times higher than that of pristine iron oxide, respectively.