Routes towards catalytically active TiO2 doped porous cellulose†
Abstract
Cellulose–TiO2 nanocomposites have been successfully prepared by non-solvent induced phase separation, either from cellulose solutions in ionic liquids or from cellulose acetate solutions in classical organic solvents followed by deacetylation (“regeneration”). Commercially available titania nanoparticles from gas phase synthesis processes have been used and processed as dispersions in the respective polymer solution. The used TiO2 nanoparticles have been characterized by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD), and their dispersions in ionic liquids and organic solvents have been evaluated by dynamic light scattering (DLS) and advanced rheology. The intermediate polymer solutions used in the phase separation process have been studied by advanced rheology. The resulting nanocomposites have been characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Special attention has been given to the complex relationship between the characteristics of the phase separation process and the porous structure of the formed nanocomposites. Two catalytic tests, based on the photocatalytic degradation of model organic dyes under UV irradiation, have been used for the characterization of the TiO2 doped nanocomposites. The proof-of-concept experiments demonstrated the feasibility of photocatalyst immobilization in porous cellulose via phase separation of nanoparticle dispersions in polymer solutions, as indicated by UV-activated dye degradation in aqueous solution.