Issue 74, 2015

Self-assembly of catecholic ferrocene and electrochemical behavior of its monolayer

Abstract

Self-assembly of catecholic ferrocene was studied on different surfaces. The self-assembly kinetics of Fc-terminated (Fc-dopamine) self-assembled monolayers (SAMs) and their stability have been studied and characterized using atomic force microscopy (AFM) and cyclic voltammetry (CV), respectively. AFM images have revealed that the self-assembly process of Fc-dopamine molecules on a mica surface follows the systematic increase of surface coverage with assembly time until a closely packed density is reached. The redox behavior of the Fc-dopamine monolayer in NaClO4 electrolyte solutions was characterized using CV, and the stability of the Fc-dopamine SAMs on an Au surface at different pH values and voltages was evaluated. CV results show that the Fc-dopamine SAMs are stable over a scan voltage range of −0.8–1.0 V under pH values lower than 11, but very rapidly destroyed above pH 11. Finally, the wetting behavior of the Fc-dopamine grafted on rough surfaces is tuned by a redox reaction of the Fc group in SAMs, which exhibits superhydrophobicity with a static water contact angle of 161° on anodized alumina surfaces, and hydrophilicity with a CA of 5° after Fc is oxidized. The work provides useful information for understanding the adhesion and deposition mechanisms of catecholic compounds on substrates.

Graphical abstract: Self-assembly of catecholic ferrocene and electrochemical behavior of its monolayer

Article information

Article type
Paper
Submitted
05 Mar 2015
Accepted
17 Jun 2015
First published
17 Jun 2015

RSC Adv., 2015,5, 60090-60095

Self-assembly of catecholic ferrocene and electrochemical behavior of its monolayer

Q. Ye, H. Wang, B. Yu and F. Zhou, RSC Adv., 2015, 5, 60090 DOI: 10.1039/C5RA03915K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements