Issue 80, 2015

Cr3+-substitution induced structural reconfigurations in the nanocrystalline spinel compound ZnFe2O4 as revealed from X-ray diffraction, positron annihilation and Mössbauer spectroscopic studies

Abstract

In an earlier work, the substitution of Zn2+ ions at the tetrahedral sites of nanocrystalline zinc ferrite (ZnFe2O4) by Ni2+ ions had been observed to cause a transformation from the normal spinel structure to the inverse one. The present study has been undertaken to explore the possibility of a similar change when the Fe3+ ions at the octahedral sites are replaced by Cr3+ ions. Concomitant lattice contraction and a steady decrease of the sizes of the nanocrystallites preceded and then resulted into the inversion of ZnFe2−xCrxO4 from normal spinel to inverse at x ≥ 0.8. Positron lifetime and coincidence Doppler broadening spectroscopic studies were carried out on the samples and a distinct third positron lifetime component emerged in the range of Cr3+ concentration 0.8 ≤ x ≤ 1.6. The new positron trapping sites were the result of the inversion of the spinel structure wherein the Cr3+ ions which substituted the Fe3+ ions at the octahedral sites got shifted to the tetrahedral sites, interchanging their positions with the Zn2+ ions. The incomplete success of inversion led to the generation of vacancy-type defects, which significantly trapped the positrons and the changes in their lifetimes indicated the occurrence of the process. The continued lattice contraction ensured an inverted spinel structure even for the final ZnCr2O4, which in coarse-grained form and at room temperature is a normal spinel. Mőssbauer spectroscopic studies also supported the idea of spinel inversion above x = 0.8 through definite changes in the isomer and quadrupole shifts.

Graphical abstract: Cr3+-substitution induced structural reconfigurations in the nanocrystalline spinel compound ZnFe2O4 as revealed from X-ray diffraction, positron annihilation and Mössbauer spectroscopic studies

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2015
Accepted
20 Jul 2015
First published
21 Jul 2015

RSC Adv., 2015,5, 64966-64975

Author version available

Cr3+-substitution induced structural reconfigurations in the nanocrystalline spinel compound ZnFe2O4 as revealed from X-ray diffraction, positron annihilation and Mössbauer spectroscopic studies

R. M. Thankachan, J. Cyriac, B. Raneesh, N. Kalarikkal, D. Sanyal and P. M. G. Nambissan, RSC Adv., 2015, 5, 64966 DOI: 10.1039/C5RA04516A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements