Issue 53, 2015

A highly active based graphene cathode for the electro-fenton reaction

Abstract

Reduced Graphene Oxide (rGO) was coated on Carbon Felt (CF) in order to design a novel cathode applied in the Electro-Fenton (EF) reaction for decontamination of wastewater polluted with Persistent Organic Pollutants (POPs). The new cathode was fabricated by an electrophoretic deposition of Graphene Oxide (GO) followed by its electrochemical reduction at a current density of −1.5 mA cm−2 for 10 min. The modified electrode and GO were characterized by SEM, AFM, XRD and XPS, showing the presence of rGO after optimization of the electrochemical conditions of synthesis. Electrode modification has improved the CF electrochemical properties as proved by the decrease of the charge-transfer resistance (Rct) determined by electrochemical impedance spectroscopy (EIS) and the increase of the CV response (2.5 times) of the FeIII/FeII couple used as a redox probe. Degradation of Acid Orange 7 (AO7), a model pollutant molecule, was monitored by UV-Vis spectrophotometry at the selected single wavelength λ = 485 nm. The results show that the degradation kinetics were 2 times higher on the graphene modified cathode compared to raw carbon felt proving the efficiency of this modification process.

Graphical abstract: A highly active based graphene cathode for the electro-fenton reaction

Supplementary files

Article information

Article type
Communication
Submitted
18 Mar 2015
Accepted
05 May 2015
First published
05 May 2015

RSC Adv., 2015,5, 42536-42539

Author version available

A highly active based graphene cathode for the electro-fenton reaction

T. X. H. Le, M. Bechelany, J. Champavert and M. Cretin, RSC Adv., 2015, 5, 42536 DOI: 10.1039/C5RA04811G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements