Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity
Abstract
Composite photocatalysts have attracted considerable attention in the exploration of both highly efficient and low cost materials. In this study, novel magnetic g-C3N4/NiFe2O4 photocatalysts were fabricated by a facile chemisorption method. X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were utilized to analyze the structure and properties of samples, which indicated that NiFe2O4 had been integrated onto the surface of g-C3N4 successfully. The as-prepared 7.5% g-C3N4/NiFe2O4, with the best photocatalytic activity, can maintain high photocatalytic activity and stability after five runs in the presence of hydrogen peroxide under visible light irradiation. During the catalytic reaction, the synergistic effect between g-C3N4 and NiFe2O4 can accelerate photogenerated charge separation and facilitate the photo-Fenton process to get an enhanced photocatalytic activity. Moreover, the collection and recycling of photocatalyst was readily achieved owing to the distinctive magnetism of g-C3N4/NiFe2O4.