Issue 61, 2015

Di(p-methoxyphenyl)amine end-capped tri(p-thiophenylphenyl)amine based molecular glasses as hole transporting materials for solid-state dye-sensitized solar cells

Abstract

Three tris(thienylphenyl)amine-based molecular glass hole transporting materials were synthetized, characterized and incorporated in solid state dye-sensitized solar cells. Devices using these compounds as solid hole conductors show relatively high Voc thanks to good energy level matching between them and the associated D102 indoline dye. However, they yield relatively low Jsc and FF compared to Spiro-OMeTAD based control devices, which is due to an order of magnitude lower conductivity with respect to Spiro-OMeTAD. Maximum solar-to-electrical energy conversion efficiencies of 1.2% under standard illumination condition was obtained. Stability tests of unsealed devices in air under continuous illumination have been performed and devices based on new compounds have kept up to 80% of their initial efficiency.

Graphical abstract: Di(p-methoxyphenyl)amine end-capped tri(p-thiophenylphenyl)amine based molecular glasses as hole transporting materials for solid-state dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2015
Accepted
28 May 2015
First published
28 May 2015

RSC Adv., 2015,5, 49590-49597

Di(p-methoxyphenyl)amine end-capped tri(p-thiophenylphenyl)amine based molecular glasses as hole transporting materials for solid-state dye-sensitized solar cells

T. Bui, S. K. Shah, X. Sallenave, M. Abbas, G. Sini, L. Hirsch and F. Goubard, RSC Adv., 2015, 5, 49590 DOI: 10.1039/C5RA07226C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements