Polymorphous transformation of rod-shaped iron oxides and their catalytic properties in selective reduction of NO by NH3
Abstract
Polymorphous transformation of rod-shaped γ-Fe2O3 was applied to fabricate Fe3O4/Fe2O3 nanorods. Hydrogen reduction of γ-Fe2O3 nanorods at 350 °C yielded Fe3O4 nanorods with similar size; re-oxidation of the resulting Fe3O4 nanorods produced γ-Fe2O3 at 500 °C and α-Fe2O3 nanorods at 600 °C. When applied to catalyze selective reduction of NO with NH3, the activity followed the order γ-Fe2O3 > γ-Fe2O3-500 > α-Fe2O3 > Fe3O4, which was well correlated with their crystalline structures. The superior performance of γ-Fe2O3 nanorods was attributed to the simultaneous exposure of Fe3+ and O2−, which favoured the adsorption and activation of NH3 and NO molecules.