One-step synthesis of Bi2WO6/Bi2O3 loaded reduced graphene oxide multicomponent composite with enhanced visible-light photocatalytic activity
Abstract
In this study, the characterization and photocatalytic activity of Bi2WO6/Bi2O3 loaded reduced graphene oxide under visible-light irradiation was investigated in detail. The results suggested that the Bi2WO6/Bi2O3 loaded reduced graphene oxide can be synthesized by a facile one-step solvothermal process. Through the characterization of the composite photocatalyst by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, UV-vis diffuse reflectance spectra and photoluminescence spectra, it was found that Bi2WO6/Bi2O3@RGO composite was formed, meanwhile GO was completely reduced to graphene and bonded with Bi2WO6/Bi2O3 with by C–O to form composite. The as-prepared composite owned enhanced absorption in the UV to visible-light region and exhibited decreased radiative recombination of photogenerated charge carriers. Moreover, it was expected that the as-prepared composites exhibited enhanced photocatalytic activity for the degradation of Rhodamine B under visible-light irradiation. Among them, BWO@R3 (GO% = 5%) owned the best photocatalytic activity, which can photodegrade RhB (10−2 g L−1) reaching 99.6% in 20 min and high concentration RhB (30−2 g L−1) reaching 99.2% in 180 min. It can be ascribed to their improved light absorption property and the reduced recombination of the photogenerated electron–holes during the photocatalytic reaction.