The one-step oxidation of methanol to dimethoxymethane over sulfated vanadia–titania catalysts: influence of calcination temperature
Abstract
Sulfated vanadia–titania catalysts were prepared by the rapid combustion method and calcined at different temperatures. The influence of calcination temperature on the physicochemical properties of the catalysts was characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (H2-TPR-MS), thermogravimetry (TG) and temperature programmed desorption of ammonia (NH3-TPD) techniques. The catalytic activities were evaluated by the partial oxidation of methanol to dimethoxymethane (DMM). The results showed that vanadia and sulfate were highly dispersed as the catalysts were calcined at 723 and 773 K. The reducibility of the highly dispersed vanadia was stronger than the aggregated vanadia. And the larger number of acidic sites was related to the higher dispersion of sulfate. Moreover, the higher dispersion of vanadia contributed to higher methanol conversion, and the stronger reducibility combined with the larger number of acidic sites led to high DMM selectivity. As a result, the catalysts calcined at 723 and 773 K presented higher methanol conversion and DMM selectivity than those calcined at 673 K or above 823 K.