Issue 105, 2015

A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes

Abstract

Biodiesel, which comprises fatty acid esters, is derived from different sources, such as vegetable oils from palm, sunflower, soybean, canola, Jatropha, and cottonseed sources, animal fats, and waste cooking oil. Biodiesel is considered as an alternative fuel for diesel engines. However, biodiesel has poor cold flow behavior (i.e., high cloud point & pour point) and oxidation stability compared with petroleum diesel because of the presence of saturated and unsaturated fatty acid esters. Consequently, the performance of biodiesel during cold weather is affected. When biodiesel is oxidized, the subsequent dregs can adversely affect the performance of the fuel system as well as clog the fuel filter, fuel lines, and injector. This phenomenon results in start-up and operability problems. Cold flow behavior is usually assessed through the pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). Earlier studies on cold flow focused on reducing the devastating effect of poor cold flow problems, such as lowering the PP, CP, and CFPP of biodiesel. This present paper provides an overview of the cold flow behavior and oxidation stability of biodiesel, as well as their effect on the engine operation system. The improvements on the behavior of cold flow of biodiesel are also discussed.

Graphical abstract: A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes

Article information

Article type
Review Article
Submitted
21 May 2015
Accepted
07 Oct 2015
First published
07 Oct 2015

RSC Adv., 2015,5, 86631-86655

Author version available

A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes

I. M. Monirul, H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, H. K. Rashedul, M. M. Rashed, H. K. Imdadul and M. H. Mosarof, RSC Adv., 2015, 5, 86631 DOI: 10.1039/C5RA09555G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements