Issue 81, 2015

Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging

Abstract

Due to the good biocompatibility, ε-polylysine (Ply) has been extensively investigated for various biomedical applications. In this study, a fluorescent monomer (named Flu-MA) was firstly synthesized through acylation reaction of fluorescein by methacryloyl chloride, and the initiator of ε-polylysine bromide (named Ply-Br) was prepared by the introduction of a bromine atom into Ply by the acylation reaction of Ply with α-bromoisobutyryl bromide. Subsequently, a novel amphiphilic fluorescent polymer (Flu-Ply) was successfully fabricated by ATRP via incorporation of Flu-MA monomer into Ply chains for the first time. The structure and properties of the obtained Flu-Ply fluorescent polymer were investigated in detail by 1H NMR, TEM, UV-vis, FL and FTIR, and the results confirmed the successful incorporation of Flu-MA into Ply by ATRP. As a result of Flu-MA and Ply respectively endowing the as-prepared Flu-Ply polymer with fluorescence and water dispersibility, it tended to self-assemble into fluorescent organic nanoparticles (FONs) with excellent biocompatibility. More importantly, the good fluorescence, uniform spherical morphology, excellent biocompatibility and water dispersibility of Flu-Ply FONs exhibited an attractive prospect for bioimaging applications.

Graphical abstract: Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging

Article information

Article type
Paper
Submitted
31 May 2015
Accepted
27 Jul 2015
First published
27 Jul 2015

RSC Adv., 2015,5, 65884-65889

Author version available

Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging

Z. Huang, X. Zhang, X. Zhang, S. Wang, B. Yang, K. Wang, J. Yuan, L. Tao and Y. Wei, RSC Adv., 2015, 5, 65884 DOI: 10.1039/C5RA10283A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements