A novel route for the synthesis of alkanes from glycerol in a two step process using a Pd/SBA-15 catalyst†
Abstract
Glycerol is produced as a valuable by-product in the transesterification of fatty acids, but it cannot be used directly as a fuel additive. In this study, we developed a systematic conversion for glycerol, which proceeds via synthesizing the key intermediate, 1,2,3-tribromopropane and using the Suzuki coupling reaction to introduce the alkyl group. A series of Pd/SBA-15 catalysts with different wt% of Pd (10%, 15% and 20%) was prepared by a one step sol–gel method. The structure and composition of the catalysts were characterized by X-ray diffraction analysis (XRD), N2 adsorption–desorption isotherms, transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectrometry (ICP-OES). The metallic state of dispersed palladium in SBA-15 is confirmed with X-ray photoelectron spectroscopy (XPS). Pd/SBA-15 with a Pd loading of 20 wt% shows good catalytic activity at 90 °C with methylboronic acid, allowing the complete conversion of 1,2,3-tribromopropane and 64% selectivity of 3-methylpentane. The optimized catalysts were also employed in coupling reactions between various alkylhalides and methylboronic acid, which obtained the desired product with an excellent selectivity. The catalyst can be successfully recycled five times. After the first cycle, we observed a drop in activity with 20% Pd/SBA-15, which was due to the leaching of palladium but in the later cycles, there was no significant decrease in activity.