Issue 79, 2015

Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior

Abstract

A bio-based nickel alginate film and copper alginate film were prepared via a facile ion exchange and casting approach. Their flame retardancy, thermal degradation and pyrolysis behavior, and thermal degradation mechanism were investigated systematically by the limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA), thermogravimetric analyzer coupled with Fourier transform infrared analysis (TG-FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It was shown that the nickel alginate film had a much higher LOI value (50.0%) than those of the sodium alginate film (24.5%) and copper alginate film (23.0%). Moreover, the nickel alginate film passed the UL-94 V-0 rating, while the sodium alginate film and copper alginate film showed no classification. Importantly, the peak of heat release rate (PHRR) of the nickel alginate film in the MCC test was much lower than those of the copper alginate film and sodium alginate film. This indicated that the introduction of nickel ions decreased the release of combustible gases. TGA results showed that the addition of copper ions and nickel ions accelerated the thermal degradation of alginates and changed the thermal degradation mechanism of the alginates. TG-FTIR and Py-GC-MS results indicated that the pyrolysis of copper alginate and nickel alginate produced much less flammable products than that of sodium alginate in the whole thermal degradation process. Finally, a possible degradation mechanism for copper alginate and nickel alginate was proposed. The results of our study provide useful information for understanding the flame retardancy mechanism of alginate as well as for designing bio-based materials with excellent fire retardancy.

Graphical abstract: Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior

Article information

Article type
Paper
Submitted
10 Jun 2015
Accepted
07 Jul 2015
First published
08 Jul 2015

RSC Adv., 2015,5, 64125-64137

Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior

Y. Liu, J. Zhao, C. Zhang, Y. Guo, L. Cui, P. Zhu and D. Wang, RSC Adv., 2015, 5, 64125 DOI: 10.1039/C5RA11048C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements