Catalytic dehydration of d-xylose to furfural over a tantalum-based catalyst in batch and continuous process†
Abstract
Furfural is a biomass-based bulk chemical and its derivatives have potential applications as renewable fuels and chemicals. A water-tolerant and stable solid acid catalyst modified hydrated tantalum oxide (TA-p) was developed for catalytic conversion of D-xylose to furfural in water–organic solvent biphasic system. This process was performed both in a batch reactor and a continuous fixed-bed reactor. In the batch process, D-xylose conversion and furfural yield were significantly affected by the organic solvent, reaction temperature and reaction time. 1-Butanol, which could be obtained through the fermentation of biomass-based carbohydrates, was selected as organic phase and the highest furfural yield of 59% was achieved with D-xylose conversion of 96% at 180 °C in the continuous process. Moreover, the long-time stability test for 80 h under the optimal conditions showed the excellent stability of TA-p catalyst.