Issue 91, 2015

Catalytic hydrogenolysis of glycerol to propanediols: a review

Abstract

The catalytic hydrogenolysis of readily available glycerol to 1,2-propanediol (1,2-PD) and 1,3-propanediol (1,3-PD), which provides a new promising synthesis route to produce propanediols, has been extensively studied in the past decades. This study summarizes the most significant reports regarding glycerol hydrogenolysis into propanediols. Three reaction routes, including those working towards 1,2-PD production and the recently proposed one leading to 1,3-PD production, have been summarized. The catalysts used for this reaction have been classified into two categories according to the type of metal components: the transition metal catalysts taking Cu, Ni, and Co as representative metal components and the noble metal catalysts containing Ru, Pt, Ir, and Ag. Some inexpensive transition-metal catalysts exhibit high 1,2-PD selectivity and yield under mild reaction conditions, whereas several noble metal catalysts are promising in synthesizing the more valuable 1,3-PD. Efficient preparation methods and precise modulation techniques have been systematically developed to synthesize functionalized catalysts on the basis of the metal species in combination with acidic or basic compounds. Other technological aspects, such as hydrogen sources, reaction solvents, reactor types and feeding processes, are also summarized in this study. The focus of this review is on summarizing the preparation methods and the performance of various catalysts in glycerol hydrogenolysis.

Graphical abstract: Catalytic hydrogenolysis of glycerol to propanediols: a review

Article information

Article type
Review Article
Submitted
21 Jun 2015
Accepted
14 Aug 2015
First published
14 Aug 2015

RSC Adv., 2015,5, 74611-74628

Catalytic hydrogenolysis of glycerol to propanediols: a review

Y. Wang, J. Zhou and X. Guo, RSC Adv., 2015, 5, 74611 DOI: 10.1039/C5RA11957J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements