Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer
Abstract
In the present work, a novel sensing system based on fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and curcumin (Cur) was designed for Cur detection. CDs were synthesized via a facile one-pot pyrolysis treatment using diethylenetriaminepentaacetic acid (DTPA) as the carbon source. The as-prepared CDs possessed strong blue fluorescence and excitation wavelength-dependent emission behavior with the maximum excitation and emission wavelength at 360 nm and 420 nm, respectively. However, the fluorescence of the CDs quenched with the introduction of Cur via FRET and the decreased intensity was linearly proportional to the concentration of Cur in the range of 0.74–5.18 μg mL−1, leading to the quantitative detection of Cur with an excellent detection limit of 44.8 ng mL−1. Furthermore, the CD-based probe can be applied in the determination of Cur in real samples with satisfactory results. The proposed method is thus expected to become a potential tool for the fast response of Cur.