Study of mean diameter and drop size distribution of emulsion drops in a modified rotating disc contactor for an emulsion liquid membrane system
Abstract
To improve the dispersity of the emulsion phase in an emulsion liquid membrane (ELM) system, a modified rotating disc contactor (MRDC) was developed. Then, the Sauter mean diameter (d32) of emulsion drops and their drop size distribution were measured by photographic method and analyzed by an image processing program in MATLAB. The effects of rotating speed, flow ratio, total flow, stirring paddle width and surfactant concentration on the drop size and its distribution were studied. The results show that, with the increase in the rotating speed and the paddle width, the degree of turbulence was enhanced which led to the reduction in the drop size. Meanwhile, membrane breakage increased with the turbulent fluctuation, which resulted in the leakage of the internal phase. Fortunately, the membrane breakage could be prevented by a suitable increase in the surfactant concentration. In addition, the drop size decreased with the increase in the surfactant concentration. Besides, the increase in the emulsion phase flow obviously increased the drop size, whereas the increase in the continuous phase flow induced the entrainment of small drops. An empirical correlation for the prediction of the d32 was established with an average absolute relative error (AARE) of 4.1%. The drop size distribution based on the drop volume was accurately fitted with a normal distribution, and its probability density function parameters (α and β) were well predicted by the dimensionless correlations, with the AAREs of 4.2% and 5.9%, respectively.