Issue 105, 2015

Redox-active cationic organoiron complex: a promising lead structure for developing antimicrobial agents with activity against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium

Abstract

We report a new class of antimicrobial agent, a redox-active, cationic organometallic, η6-arene–η5-cyclopentadienyliron(II) complex, with activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Structure–property relationship investigations revealed that the antimicrobial activity against these pathogens, especially methicillin-resistant Staphylococcus aureus, is tunable. The ability of this new class of antimicrobial agent to induce cellular oxidative stress was confirmed using dichlorodihydrofluorescein assay. We attributed the induction of oxidative stress as a mechanism that contributes to the overall antimicrobial activity of these compounds. Generally, this antimicrobial agent was non-toxic to BJ fibroblast cell lines at ≤128 μg mL−1. The η6-arene–η5-cyclopentadienyliron(II) complex represents a potential lead structure for the development of topical antimicrobial therapeutics to combat resistant strains of Gram-positive bacteria.

Graphical abstract: Redox-active cationic organoiron complex: a promising lead structure for developing antimicrobial agents with activity against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium

Article information

Article type
Paper
Submitted
18 Aug 2015
Accepted
06 Oct 2015
First published
07 Oct 2015

RSC Adv., 2015,5, 86421-86427

Author version available

Redox-active cationic organoiron complex: a promising lead structure for developing antimicrobial agents with activity against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium

A. S. Abd-El-Aziz, C. Agatemor, N. Etkin, D. P. Overy and R. G. Kerr, RSC Adv., 2015, 5, 86421 DOI: 10.1039/C5RA16613F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements