Issue 92, 2015

Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells

Abstract

The surface defects of the organometallic perovskite play an important role in the photovoltaic performance of solar cells, which depress the conversion efficiency and cause photocurrent hysteresis. As a key step in fabricating perovskite solar cells, the heating step possibly modifies the surface defects, which in turn leads to the modified device performance. In this context, the surface defects of the organometallic perovskite (CH3NH3PbI3) and their modification by thermal annealing are investigated. It is revealed that the surface defects create electron traps which can be reduced by thermal annealing. Consequently, the perovskite solar cells exhibit improved conversion efficiency from 10.9% to 17.1% with the thermal annealing temperature of the perovskite increasing from 60 °C to 130 °C. The photocurrent hysteresis of the solar cells is also subdued. This work provides further insights into the function of thermal annealing by modifying surface defects, which also favors the exploration of the perovskite solar cells with high-efficiency and eliminated photocurrent hysteresis.

Graphical abstract: Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells

Article information

Article type
Paper
Submitted
18 Aug 2015
Accepted
01 Sep 2015
First published
01 Sep 2015

RSC Adv., 2015,5, 75622-75629

Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells

P. Cui, P. Fu, D. Wei, M. Li, D. Song, X. Yue, Y. Li, Z. Zhang, Y. Li and J. M. Mbengue, RSC Adv., 2015, 5, 75622 DOI: 10.1039/C5RA16669A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements