Issue 114, 2015

Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2 adsorption

Abstract

Novel composite MIL-101(Cr)@PFs were successfully prepared by immobilizing MIL-101(Cr) crystals onto the 100% virgin pulp fibers (PFs), and then characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal analysis. The adsorption isotherms of CO2 and benzene vapor on MIL-101(Cr)@PFs were measured by a volumetric method. Mechanical stability of sheet MIL-101(Cr)@PFs were tested on an oscillator with adjustable oscillation frequency of 2 and 4 Hz. Results showed that the as-synthesized MIL-101(Cr)@PFs demonstrated similar gas uptake to the parent MIL-101(Cr) as well as excellent stability. The surface area of MIL-101(Cr)@PFs increased with the loaded amount of MIL-101(Cr). The uptakes of 67MIL-101(Cr)@PF for CO2 and benzene vapor reached 2.13 mmol g−1 and 10.29 mmol g−1 at 298 K, respectively, close to those of unit mass of MIL-101(Cr) loaded on the pulp fibers, suggesting high utilization efficiency of MIL-101(Cr) after casting on PFs. MIL-101(Cr)@PFs prepared in this work were flexible. 50MIL-101(Cr)@PFs can be distorted up to 360° without damage. Importantly, mass retention rate of MIL-101(Cr)@PFs maintained up to 99% after vibration of 120 minutes at 2 Hz or 4 Hz, implying that MIL-101(Cr) crystals had been anchored on pulp fibers stably. It could be expected that the sheet MIL-101(Cr)@PFs would become a promising adsorption material for gas adsorption and purification in practical applications.

Graphical abstract: Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2 adsorption

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2015
Accepted
23 Oct 2015
First published
29 Oct 2015

RSC Adv., 2015,5, 94276-94282

Author version available

Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2 adsorption

Z. Zhou, B. Cheng, C. Ma, F. Xu, J. Xiao, Q. Xia and Z. Li, RSC Adv., 2015, 5, 94276 DOI: 10.1039/C5RA17270E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements