Issue 114, 2015

Degradation of soil-adsorbed DDT and its residues by NZVI addition

Abstract

Dichlorodiphenyltrichloroethane (DDT) is a highly persistent and toxic chlorinated pesticide. Market-grade DDT is a mixture of 4,4-DDT (85%), 2,4-DDT (15%) and trace amounts of 4,4-DDD, 2,4-DDD, 4,4-DDE and 4,4-DDMU. This mixture is commonly known as DDT and its residues, i.e., DDTr compounds. Due to their strongly hydrophobic nature, DDTr compounds are mostly partitioned into soil and sediments in the natural environment. Preliminary aqueous phase experiments showed that DDT and DDD were degraded by NZVI, with the degradation rates being 2,4-DDT > 4,4-DDT > 2,4-DDD > 4,4-DDD. NZVI addition to soil contaminated with DDTr compounds resulted in rapid reduction in soil-phase 4,4-DDT and 2,4-DDT concentrations and increase in soil-phase 4,4-DDD and 2,4-DDD concentrations, indicating conversion of 2,4-DDT to 2,4-DDD and 4,4-DDT to 4,4-DDD. Multiple addition of NZVI resulted in complete degradation of soil phase 4,4-DDT and 2,4-DDT and reduction in concentrations of 4,4-DDD and 2,4-DDD. Considering the extremely hydrophobic nature of DDTr compounds and their consequent unavailability in the aqueous phase, only direct soil-phase interaction between DDTr compounds and NZVI can explain these experimental observations. A mathematical model incorporating soil phase DDTr–NZVI interactions could explain and simulate the experimental data adequately. Mass balance on DDTr concentrations in soil indicated that ∼40 percent of the DDTr initially present in soil could be removed through the first NZVI addition. Further NZVI additions were successively less effective in removing DDTr from soil and after four successive additions of NZVI, ∼64% reduction in soil-phase DDTr concentration was achieved.

Graphical abstract: Degradation of soil-adsorbed DDT and its residues by NZVI addition

Article information

Article type
Paper
Submitted
07 Sep 2015
Accepted
21 Oct 2015
First published
28 Oct 2015

RSC Adv., 2015,5, 94418-94425

Author version available

Degradation of soil-adsorbed DDT and its residues by NZVI addition

S. P. Singh and P. Bose, RSC Adv., 2015, 5, 94418 DOI: 10.1039/C5RA18282D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements