A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose†
Abstract
Glucose biosensors have attracted increased attention, as the rapid and sensitive detection of glucose is highly desirable for diabetes diagnosis. In this article, we designed a type of lysozyme functionalized fluorescence copper nanoclusters (Lys-CuNCs) to detect glucose levels in blood samples. Fluorescence measurements were carried out to optimize the synthesis conditions (e.g. mass ratio, pH and reaction time) for the biosensor. Under optimum conditions, the obtained Lys-CuNCs with an average diameter of 2 nm exhibited bright orangey-red fluorescence with high quantum yields (up to 5.6%). The fluorescence signal of Lys-CuNCs was quenched upon the addition of glucose, presumably due to the reduction of Cu(I) on the NCs surface by glucose. Thus the Lys-CuNCs can be served as a biosensor for glucose detection and two linear response ranges respectively in 0.03–10 μM and 0.5–10 mM of glucose were observed with a detection limit of 1.9 nM. Furthermore, this biosensor showed superior selectivity for various interferences, including light radiation, metal ions, carbohydrates and amino acids. In view of these properties, the Lys-CuNCs biosensor was applied in the determination of glucose in blood samples, and the results agreed well with that obtained from a currently used clinical method. Finally the visualized fluorescence variation of Lys-CuNCs may further enable the rapid and simple detection of glucose level in blood.