Issue 128, 2015

Theoretical insights into structure, bonding, reactivity and importance of ion-pair interactions in Kirby's tetrafluoroboric acid salts of twisted amides

Abstract

The geometries of the amides 1-azatricyclo [3.3.1.13,7] decan-2-one, tetrafluoroboric acid salt (1), 3-methyl-1-azatricyclo [3.3.1.13,7] decan-2-one, tetrafluoroboric acid salt (2), and 3,5,7-trimethyl-1-azatricyclo [3.3.1.13,7] decan-2-one, tetrafluoroboric acid salt (3) have been calculated at the DFT-D3 (BJ) level using density functionals PBE, PBE0, TPSS and TPSSH. The optimized structure of (1) at the DFT/PBE0-D3(BJ) level of theory in methanol is in excellent agreement with the experimental structure. The geometries of the hydrolyzed products (4–7) have been optimized with PBE and PBE0 functionals. In the studied compounds (1–3), the [BF4] anion interacts with cationic fragments [1]+, [2]+ and [3]+ through the N–H⋯F hydrogen bond. The ion-pair interactions affect the C–N–H bond angles which are relatively smaller (110.3° in 1, 109.9° in 2, 110.0° in 3) than those for cationic fragments (104.8° in 1+, 104.8° in 2+, 105.1° in 3+). The charge analysis formulates the salts (1–3) as [cation]q+[BF4]q with q = ∼0.81. The high stability of ion-pairs is due to significant flow of charge from the BF4 anion to the cation. There is significant hydrogen bonding (H⋯F) interaction in 1–3. Salt 1 has the lowest ion pair dissociation energy of ΔE = 5.46 kcal mol−1 in methanol and 4.91 kcal mol−1 in acetonitrile. The hydrolysis reaction of 1 is most exothermic (ΔE = −11.84 kcal mol−1) and thus it is more favourable. The hydrolysis of amides 2 and 3 with a bridgehead methyl is relatively less favourable. Hydrolysis reactions of amides 1 and 3 at the DFT/PBE-D3(BJ) level in acetonitrile have been investigated. The calculated enthalpies of the hydrolysis product formation are 4, 41.61 kcal mol−1 and 7, 32.43 kcal mol−1.

Graphical abstract: Theoretical insights into structure, bonding, reactivity and importance of ion-pair interactions in Kirby's tetrafluoroboric acid salts of twisted amides

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2015
Accepted
07 Dec 2015
First published
08 Dec 2015

RSC Adv., 2015,5, 105668-105677

Theoretical insights into structure, bonding, reactivity and importance of ion-pair interactions in Kirby's tetrafluoroboric acid salts of twisted amides

K. K. Pandey, RSC Adv., 2015, 5, 105668 DOI: 10.1039/C5RA22792E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements