Issue 5, 2015

Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans

Abstract

Iron is essential for eukaryotic biochemistry. Systematic trafficking and storage is required to maintain supply of iron while preventing it from catalysing unwanted reactions, particularly the generation of oxidising reactive species. Iron dyshomeostasis has been implicated in major age-associated diseases including cancers, neurodegeneration and heart disease. Here, we employ population-level X-ray fluorescence imaging and native-metalloproteomic analysis to determine that altered iron coordination and distribution is a pathological imperative of ageing in the nematode, Caenorhabditis elegans. Our approach provides a method to simultaneously study iron metabolism across different scales of biological organisation, from populations to cells. Here we report how and where iron homeostasis is lost during C. elegans ageing, and its relationship to the age-related elevation of damaging reactive oxygen species. We find that wild types utilise ferritin to sustain longevity, buffering against exogenous iron and showing rapid ageing if ferritin is ablated. After reproduction, escape of iron from safe-storage in ferritin raised cellular Fe2+ load in the ageing C. elegans, and increased generation of reactive species. These findings support the hypothesis that iron-mediated processes drive senescence. We propose that loss of iron homeostasis may be a fundamental and inescapable consequence of ageing that could represent a critical target for therapeutic strategies to improve health outcomes in ageing.

Graphical abstract: Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Jan 2015
Accepted
03 Mar 2015
First published
03 Mar 2015
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2015,6, 2952-2962

Author version available

Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush and G. McColl, Chem. Sci., 2015, 6, 2952 DOI: 10.1039/C5SC00233H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements