Issue 10, 2015

Implications of protein polymorphism on protein phase behaviour

Abstract

The phase behaviour of small globular proteins is often modeled by approximating them as spherical particles with fixed internal structure. However, changes in the local environment of a protein can lead to changes in its conformation rendering this approximation invalid. We present a simple two-state model in which protein conformation is not conserved and where the high-energy, non-native state is stabilised by pair-wise attractive interactions. The resulting phase behaviour is remarkably complex, non-universal and exhibits re-entrance. The model calculations show a demarcation between a regime where conformational transitioning is largely enslaved by phase separation and one where this is not the case. In the latter regime, which is characterised by a large free energy difference between the native and the non-native state, we deduce that the kinetics of the phase transition strongly depend on the average conformation of the proteins prior to their condensation. For condensation to occur in this regime within a dispersion of native proteins, nucleation of a cluster of proteins in the non-native state is required. We argue that our theory supports the distinction between common phase separation and the nucleated assembly of non-native supramolecular aggregates in protein dispersions.

Graphical abstract: Implications of protein polymorphism on protein phase behaviour

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2015
Accepted
19 Jan 2015
First published
28 Jan 2015

Soft Matter, 2015,11, 2036-2045

Implications of protein polymorphism on protein phase behaviour

J. Stegen and P. van der Schoot, Soft Matter, 2015, 11, 2036 DOI: 10.1039/C5SM00003C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements