Issue 18, 2015

Surfactant-induced assembly of enzymatically-stable peptide hydrogels

Abstract

The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. We have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparison to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.

Graphical abstract: Surfactant-induced assembly of enzymatically-stable peptide hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2015
Accepted
31 Mar 2015
First published
07 Apr 2015

Soft Matter, 2015,11, 3572-3580

Surfactant-induced assembly of enzymatically-stable peptide hydrogels

B. H. Jones, A. M. Martinez, J. S. Wheeler and E. D. Spoerke, Soft Matter, 2015, 11, 3572 DOI: 10.1039/C5SM00522A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements