Issue 1, 2015

A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production

Abstract

The tightly coupled heterostructure g-C3N4/Au/poly(3-hexylthiophene) (P3HT)/Pt was successfully prepared by a self-assembling method. The heterojunction photocatalyst displayed high activity for hydrogen production from water which contains triethanolamine as an electron donor under visible light irradiation. The samples were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, photoluminescence (PL) spectra analysis and transmission electron microscopy (TEM). The experimental results demonstrated that the g-C3N4/Au/P3HT/Pt structure was conducive to the efficient separation of photo-generated electron–hole pairs, which can be explained by the strong junction of chemical bond between Au and P3HT. The effect of P3HT content on the activity of the photocatalysts was investigated with a series of g-C3N4/Au/P3HT heterostructure samples loaded with Pt as a cocatalyst in triethanolamine aqueous solutions. The optimal P3HT content was determined to be 0.5 wt%, and the corresponding hydrogen evolution rate was 320 μmol h−1.

Graphical abstract: A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production

Article information

Article type
Communication
Submitted
06 Sep 2014
Accepted
03 Nov 2014
First published
04 Nov 2014

J. Mater. Chem. A, 2015,3, 109-115

Author version available

A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production

Y. Zhang, F. Mao, H. Yan, K. Liu, H. Cao, J. Wu and D. Xiao, J. Mater. Chem. A, 2015, 3, 109 DOI: 10.1039/C4TA04636F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements