Issue 25, 2015

A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading

Abstract

Realization of high cell energy density at high mass loading is a critical requirement for the practical applications of supercapacitors. To date, the cell energy density of supercapacitor devices has been mainly limited by the low utilization efficiency of electroactive materials on positive electrodes at high mass loading and the low capacitance value of common activated carbon materials on negative electrodes. In this study, a super-high energy density asymmetric supercapacitor device with commercial mass loading was successfully fabricated by using a 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) composite as the positive electrode and activated polyaniline-derived carbon (APDC) as the negative electrode. Due to its unique core–shell structure, the NiCo-LDH@CNT/nickel foam (NF) electrode with a mass loading of 8.5 mg cm−2 delivered a high capacitance of 2046 F g−1 at 1 A g−1, and still retained a high capacitance of 1335 F g−1 as the current density increased up to 15 A g−1. Coupled with the high performance APDC-based negative electrode with a capacitance of 487 F g−1 at 1 A g−1, the asymmetric NiCo-LDHs@CNT/NF//APDC/NF supercapacitor device delivered a maximum energy density of 89.7 W h kg−1 with an operational voltage of 1.75 V, and a maximum power density of 8.7 kW kg−1 at an energy density of 41.7 W h kg−1, suggesting its promising applications in future.

Graphical abstract: A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2015
Accepted
06 Apr 2015
First published
08 Apr 2015

J. Mater. Chem. A, 2015,3, 13244-13253

Author version available

A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading

X. Li, J. Shen, W. Sun, X. Hong, R. Wang, X. Zhao and X. Yan, J. Mater. Chem. A, 2015, 3, 13244 DOI: 10.1039/C5TA01292A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements